
Updating the available AODV-UU implementation to currently supported Linux version

1

1. Department of Computer Science and Engineering, SRM University.

ABSTRACT

Mobile Ad-hoc networks are infrastructure-less communication networks which allow participating mobile nodes to

communicate without centralized control. The routing protocol “Ad-hoc On Demand Distance Vector routing protocol”

(AODV)
[1]

 is one such protocol of interest. Our goal is to make the AODV-UU
[2]

 implementation of this protocol compatible

with Linux Kernel version 3.8 as it was earlier supported only till 2.6 kernel version with a backward compatibility to 2.4 kernel

version.

Keywords:

AODV
[1][2]

, MANET
[3]

,NETLINK
[18]

,LINUX KERNEL
[16]

1. INTRODUCTION

Ad-hoc networks are a temporary requirement based

networks, where every node with a requirement of

communication joins the network, it then uses other nodes as

agents for forwarding data packets it has generated. MANET
[4]

does not have any infrastructure, hence every node has the

capability to move within the range of network and have a

seamless communication with any node ready for

communication. Distinctive properties of MANET
[4]

 are:

 Energy and security constraints.

 Dynamic topologies.

 Limited bandwidth.

Additionally, each node keeps track of all the nodes available

in its network with the help of a routing table. This is done

using any of the available routing protocols, one such routing

protocol is AODV
[1]

 routing protocol
[3][4][12]

 which is a reactive

routing protocol and updates routing table entirely based on

the packets it receive when connected to the Ad hoc network

which is particularly efficient for mobile

nodes running on

limited power sources. One of the stable and available open

source implementations of AODV

is AODV-UU

[2]
by Uppsala

University, implemented on the Linux based Operating

systems.

This implementation was done for the 2.6 kernel

version and is

not compatible with later versions of Linux kernel
[16]

. Our

contribution towards updating is to change the variable names

according to 3.8 kernel
[16]

, resolving the driver compatibility

issues when using Broadcom Wi-Fi Adapter
[7]

. Qualcomm

Atheros Adapters have no compatibility issues with the

Original version of AODV-UU. Netlink
[18]

 socket is a special

Inter-process communication scheme used for transferring

information between kernel
[16]

 and user space processes, it

also provides a full-duplex communication link between the

Linux kernel and user space. This is done using the standard

socket API’s for user-space processes, and a special kernel

API for kernel modules. Netlink sockets use the address

family AF_NETLINK, as compared to AF_INET used by a

TCP/IP socket.

 Need for Netlink socket

 It is simple to interact with the standard Linux kernel

as only a constant has to be added to the Linux kernel

source code. There is no risk to pollute the kernel or

to drive it in instability, since the socket can

immediately be used.

 Netlink sockets are asynchronous as they provide

queues, so they do not interfere with kernel

scheduling.

 Netlink sockets provide the possibility of multicast.

 Netlink sockets provide a truly bidirectional

communication channel: A message transfer can be

initiated by either the kernel or the user space

application.

The remainder of this paper is organized as follows.

Implementation of AODV-UU on Linux Kernel

version 3.8

Sudharsan D
1
, Vamshi Raghu Nandan K

1
,

Sumanth K
1
, Vamsi Krishna B

1
, Krishna Reddy KV

1
, Raj Kumar Reddy G

1
,

Revathi Venkataraman N
1
, Pushpalatha M.

1

Updating the available AODV-UU implementation to currently supported Linux version

2

We briefly describe the various implementations of AODV in

Section 2.1, as well as various works done on AODV-UU

implementation in Section 2.2. Section 3 describes the

methodology of the process of updating. Section 4 describes

the experimentation done in real-time and presents

comprehensive test results from the field testing. Section 5

summarizes the work done.

2. RELATED WORK

2.1 Other Implementations of AODV
MAD-HOC

 [17]
 was the first AODV implementation, for 2.2

kernel version and it is written in Java. MAD-HOC is a

metropolitan mobile ad hoc network simulator. It doesn’t have

queuing of data packets while route discovery is in process.

Does not support multicast. Packet capturing is done using

snooping.

AODV-UCSB (University of California, Santa-Barbara)
 [9]

is an implementation for 2.4 kernel version. It uses the Netlink

socket for capturing packets from kernel.

AODV-UIUC
 [15]

implementation is similar to AODV-UCSB

and AODV-UU except that it explicitly separates the routing

and forwarding functions. Routing protocol logic takes place

in the user-space daemon, while packet forwarding is handled

in the kernel.

Kernel AODV
[10]

 is a loadable kernel module for Linux. It

implements AODV routing between computers equipped with

WLAN devices. It does not need a user-space daemon as it

uses Netfilter. It places the routing protocol logic inside the

kernel module. This does not need packets to traverse from

kernel to user-space, which improves the performance.

Proxy­AODV
[13]

 is an implementation in which when source

and destination are not connected some of the nodes called

proxy nodes are selected by source to hold the data on behalf

of destination. Proxy nodes act as a source and try to deliver

data to the destination.

UoBWinAODV
[19]

 is a protocol handler which uses a NDIS

driver and a user space program to manage the operations of

AODV. The NDIS driver is a filter driver that sits on top of

the NIC driver, controlling the packet flow and obtaining

information. The user space program, run on a command

prompt, interacts with the NDIS filter driver using IOCTL

calls and manages the routing environment as required by the

AODV protocol.

AODV-BR
[14]

 uses backup routing to provide multiple paths
[5]

in case of link failure by creating a mesh network.

2.2 Other Works Done in AODV-UU

Adding IPv6 compatibility to AODV-UU
[20]

The IPv6 patch for AODV-UU version 0.9 aims to make the

source code compilable either for IPv4 or for IPv6 networks.

This is done by adding a layer for IP-version abstraction,

called iplib. Within the AODV code all types and calls to the

Linux kernel or socket interfaces specific to the IP-version are

replaced by calls to the respective iplib types and functions.

Adding reputation extension to AODV-UU
[22]

This procedure relies on the overall cooperation of nodes

taking part to the Wireless Mesh Network. Each node

associates a reputation value to its neighbors, which reflects

the trust it puts in them. Based on that reputation value, the

hop count is increased or decreased, depending whether the

intermediate node is trusted or not. This mechanism enables to

select the most trustworthy paths in the mesh. We present

preliminary experimental results obtained with our

implementation.

Implementation of Geo cast Enhanced AODV-UU in Linux

Test bed
[21]

This procedure uses GPS data to reduce routing delay and

efficient information distribution. This Information is used to

geo cast the request rather than broadcast route request in

AODV-UU, thereby, reducing the number of broadcasts

(routing overhead). This eventually helps to reduce the

flooding of packets in the network for route discovery.

3. METHODOLOGY

The AODV-UU 0.9.6 implementation was first updated to the

kernel version of 3.8, latest available version at the time of

Updating, using Ubuntu 12.04.3 LTS Distribution. Most

significant changes were made to the netlink socket handler

functions in the code. Changes were made in the file

KAODV_NETLINK.C, the functions which were changed

include NLMSG_PUT(skb, 0, 0, type, size - sizeof(*nlh))

Changed to __NLMSG_PUT(skb, 0, 0, type, size -

sizeof(*nlh)),this change is also reflected in the method

kaodv_netlink_build_msg where it is called, variables in the

method void kaodv_netlink_send_rt_update_msg concerned

with kaodv_rt_msg type are changed,

The protocol had issues with the Broadcom Wi-Fi adapter so a

BCML kernel source is added explicitly for smooth

functionality of protocol.

The field testing
[8][11]

 was carried out at the open air

auditorium inside university campus. We have used laptops

pre-Installed with Ubuntu OS, and python testbed which helps

with running AODV-UU, other packages used are:

 Tshark-network analyzer from wireshark.

 WxPython- wrapper for GUI.

 PythonNumpy-package for scientific computing.

 Vsftpd-an FTP server.

 Ssh- cryptographic network protocol for secure data

communication.

 Hping3- network tool able to send custom TCP/IP

packets and to display target replies like ping.

program does with ICMP replies.

 Bison- a parser generator for context-free languages.

 Flex- a tool for generating scanner.

Laptops were acting as nodes and every node was moving

dynamically in random directions to simulate a dynamic

topology. The python test bed enables nodes to select files

from the file system and transfer them to any node which is

within the network. If the node is not in direct communication,

then an intermediate neighbor is used as transmitter of our

data. This process is transitive, hence every node is accessible

in network, if not directly, at least through any intermediate

http://user.it.uu.se/~henrikl/aodv/

Updating the available AODV-UU implementation to currently supported Linux version

3

nodes participating in the network.

The experimentation also produces log folders containing 3

files. Namely, aodv.txt containing the log information from for

AODV routing, aodv-rt.txt contains the routing table

information, aodvoutput containing logs from the tshark

command which were used to analyze the network.

4. EXPERIMENTATION AND TEST RESULTS

Methodology described in the previous section is presented in

the graphs packet loss ratio, delay in packet transfers,

throughput of the network is shown in the network analysis

graphs.

4.1 Packet Loss

An important parameter in analyzing the network is packet

loss ratio. Packet when arrived in a network layer is forwarded

when a valid route to the destination is known, otherwise it is

buffered until a valid route is found. A packet is lost when the

buffer is full or the time that the packet has been buffered,

exceeds the limit.

PLoss = DataSent – DataRec

This loss denotes the number of packets which are lost either

due to buffer overflow or it has taken more time than the Time

to Live (TTL) value set by the sender.

The packet loss ratio from the figure 1 shows the way in

which packets are lost in the network during in the initial

phase of testing. The ratio gradually starts decreasing after

initial phase and finally attains a constant value of 0.5 after

400 msecs.

Figure 1

4.2 Delay

Delay parameter measured for a network is the latency used

by a packet to navigate from its originator to destination.

The traffic type used is UDP. Initially, the graph shows high

delay ratio and gradually decrease to finally stabilize at 0.13.

Two massive sources contributing to packet loss are

retransmissions due to Ad hoc networks and Wireless LAN

MAC layers. Figure 2 shows the delay ratio of the network. It

initially went high and gradually stabilized at .125 secs.

Figure 2

4.3 Throughput

Figure 3

In communication networks, such as Ethernet or packet radio,

throughput or network throughput is the rate of successful

message delivery over a communication channel. This data

may be delivered over a physical or logical link, or pass

through a certain network node. The throughput is usually

measured in bits per second (bit/s or bps), and sometimes in

data packets per second or data packets per time slot. The

system throughput or aggregate throughput is the sum of the

data rates that are delivered to all terminals in a network.

Throughput refers to how much data can be transferred from

one location to another in a given amount of time. Figure 3

describes the throughput achieved during the experimentation.

It has decreased over time and finally stabilized at 90 Kbps.

Updating the available AODV-UU implementation to currently supported Linux version

4

5. CONCLUSION

The Experimental results establish that AODV-UU Protocol is

working well with the 3.8 Linux Kernel version. The network

parameters analyzed were well in accordance with all the

parameters of the results from previous works done in AODV-

UU
[6]

.

ACKNOWLEDGMENT

This work is funded in part by the Defence Research and

Development Organization under grant no:

ERIP/ER/1203090/M/01/1474.

REFERENCES

1. C. Perkins, E. Belding-Royer, S. Das, RFC Draft for experimental

AODV. https://www.ietf.org/rfc/rfc3561.txt.

2. AODV-UU source from GitHub.
 https://github.com/erimatnor/aodv-uu

3. Klein-Berndt L., A quick guide to AODV routing, National

 Institute of Standards and Technology, (2001).
4. Perkins C., Belding-Royer E. and Das S., Ad hoc on

 demand distance vector (AODV) routing (RFC 3561), IETF

 MANET Working Group (2003).
5. Marina M.K. and Das S.R., On-demand multipath distance

 vector routing in ad hoc networks, IEEE, (2001).

6. Hua Yang, Zhi-yuan Li, Simulation and analysis of a modified AODV
routing protocol, Computer science and network technology (ICCSNT),

2011.

7. IEEE Computer Society , IEEE 802.11 Standard , IEEE standard for

Information Technology, 1999.

8. V. kawadia, Y. Zhang and B. Gupta. System Services for Implementing
Ad-Hoc Routing: Architecture, Implementation and Experiences. In

Proceedings of the 1st International conference on Mobile Systems,

Applications, and Services (MobiSys), Pages 99-112, San Francisco
,CA, June 2003.

9. I.D. Chakeres. AODV-UCSB Implemetation from University of

California Santa Barbara.

 http://moment.ucsb.edu/AODV/aodv.html.
10. L. Klein-Berndt. Kernel AODV from National Institute of standards and

Technology (NIST)

 http://w3.antd.nist.gov/wctg/aodv_kernel/
11. D.A. Maltz, J. Broch, and D.B. Johnson, Experiences Designing and

Building a Multi-hop Wireless Ad hoc Testbed. Technical Report CMU.

CMU school of Computer science.

12. E.M. Royer and C.E. Perkins . Multicast Operation of the Ad-hoc On-
Demand Distance Vector (AODV) Routing Protocol . Proceedings of

the 5th ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom), pages 207-218, Seattle, WA, August 1999.

13. Anshuman Tiwari and Sridhar Iyer , proxy-AODV : Extension of AODV

For Partially Connected Ad hoc Networks.

14. Sung-Ju Lee and Mario Gerla, AODV-BR Backup Routing in Ad hoc
Networks. Wireless Communications and Networking Conference, 2000.

WCNC. 2000 IEEE , Volume: 3, Digital Object Identifier:

10.1109/WCNC.2000.904822 Publication Year: 2000 , Page(s): 1311 -

1316 .

15. AODV-UIUC University of Illinois at Urbana Champaign
http://sourceforge.net/projects/aslib/files/AODV-UIUC/

16. Ubuntu release notes for 12.04 LTS version on 3.8 Linux Kernel,

https://wiki.ubuntu.com/PrecisePangolin/ReleaseNotes/UbuntuDesktop/

UbuntuDesktop-12.04
17. F.Lilieblad ,O.Mattson, P.Nylund,D.Ouchterlony, and A.Roxenhag.

Mad-hoc AODV Implementation and Documentation.

http://mad-hoc.flyinglinux.net,
18. Pablo Neira Ayuso, Rafael M. Gasca and Laurent Lefevre,

“Communicating between the kernel and user space in Linux using

Netlink sockets”
19. Koojana Kuladinithi, Release of UoBWinAODV - An AODV Protocol

Handler for Windows.

http://www.ietf.org/mail-archive/web/manet/current/msg05460.html
20. IPv6 compatibility for AODV.

http://www.ietf.org/mail-archive/web/manet/current/msg05795.html

21. Mubarik, M.A., Khan, S.A. , Hassan, S.A. , Sarfraz, N.
Implementation of geocast enhanced aodv-uu in linux testbed.

June 2009.

22. Guillaume, Julien “Adding reputation extensions to AODV-UU”.

Sudharsan D. Junior Research Fellow, Department of

Computer Science and Engineering, SRM University.

Vamshi Raghu Nandan K, Student, Department of

Computer Science and Engineering .

https://wiki.ubuntu.com/PrecisePangolin/ReleaseNotes/UbuntuDesktop/UbuntuDesktop-12.04
https://wiki.ubuntu.com/PrecisePangolin/ReleaseNotes/UbuntuDesktop/UbuntuDesktop-12.04
http://www.ietf.org/mail-archive/web/manet/current/msg05460.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mubarik,%20M.A..QT.&searchWithin=p_Author_Ids:37680098700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khan,%20S.A..QT.&searchWithin=p_Author_Ids:38181856100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hassan,%20S.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sarfraz,%20N..QT.&searchWithin=p_Author_Ids:37888578600&newsearch=true

